5. (12 points) A large crane is 300 feet above the ground. It has a cable with density $5 \mathrm{lbs} / \mathrm{ft}$ that reaches all the way down to the ground.
(a) If a 100 lbs object is attached to the bottom of the cable, how much total work is done in lifting the object the entire 300 feet?
(b) At the end of the day, there is only enough fuel left for the crane to do $20,000 \mathrm{ft}-\mathrm{lbs}$ of work. Currently, the cable is extended the full 300 feet to the ground and there is NO object attached to the end. How high can it lift the cable before it runs out of fuel?
A picture is provided with labels you should find helpful, I suggest you find a first. (Give your final answer for h as a decimal to four digits).

6. (8 points) A bag of sand is lifted from the ground to the top of a 30 foot high building at a constant speed with a cable that weighs $2 \mathrm{lb} / \mathrm{ft}$. A small tear in the bag causes sand to slowly pour out. Initially the bag contains 100 pounds of sand, but the sand leaks out at a constant rate and the bag weighs 90 pounds just as it reaches the 30 foot height. How much work is done?
(Hint: Find a linear equation for the force (weight) of the bag of sand at a given height.)
7. (8 pts) After Dr. Loveless dries off, he continues his work out. He starts to lift a sandbag. The sandbag weighs 50 pounds when it is on the ground. As he lifts the bag it leaks out sand at a constant linear rate. When the sandbag is lifted 2 feet, it weighs 46 pounds. Before he passes out, Dr. Loveless does 145 foot-pounds of work in lifting the sandbag. How high did he lift the sandbag? Give your final answer as a decimal.
(Hint: Start by finding the linear function for weight (force) in terms of height.)
8. (6 points) Consider the region, R, bounded by $y=4 x^{2}$ and the x-axis between $x=0$ and $x=1$. Using both methods, cylindrical shells and cross-sectional slicing, set up two integrals for the volume of the solid obtained by rotating the region R about the vertical line $x=6$.
Only set up, DO NOT EVALUATE.
(a) Cross-sectional slicing:
(b) Cylindrical Shells:
9. (10 points) For both questions below, give the correct units for your final answer.
(a) A well is in the shape of a cylinder of radius 2 feet and depth 10 feet. The well is half full of water. Find the work required to pump all the water up and out of the top of the well.
(Remember, the weight of water is $62.5 \mathrm{lbs} / \mathrm{ft}^{3}$.)
(b) A small rocket is blasting off from the ground. As it burns through fuel, the rocket gets lighter. The weight (force) of the rocket when it is x meters off the ground is given by $F(x)=40+50 e^{-x / 2}$ in Newtons.
Find the work done by the rocket in the first 8 meters as it blasts off from the ground.
10. (10 points) Consider the region R in the first quadrant of the $x y$-plane bounded by $y=x^{2}, y=4$ and the y-axis. The water in a full tank is in the shape of the solid obtained by rotating R about the y-axis.

Assume all lengths are in meters, so the tank is 4 meters high. And remember the density of water is $1000 \mathrm{~kg} / \mathrm{m}^{3}$ and gravity is $9.8 \mathrm{~m} / \mathrm{s}^{2}$.
Set up and evaluate an integral for the work required to pump all the water to the top of the tank and over the edge.
5. (10 points) The portion of the graph $y=\frac{1}{9} x^{2}$ between $x=0$ and $x=3$ is rotated around the y-axis to form a container. The container is full of a liquid that has density $100 \mathrm{lbs} / \mathrm{ft}^{3}$. Find the work required to pump all of the liquid out over the side of the container. (Distance is measured in feet).

5. (14 points) You run out of water balloons. So you devise a scheme to dump a large bucket of water on your instructor's head instead. Here is your plan:
(a) A tank full of rainwater is outside your dorm. The shape of the water in the tank is described as follows:
Consider the region R in the first quadrant of the $x y$-plane bounded by $y=x^{2}, y=1$ and the y-axis (lengths are in meters). The water in the full tank is in the shape of the solid obtained by rotating R about the y-axis.
You plan to pump all the water to the top of the tank and over the edge into your bucket (the bucket is large enough to hold all the water you pump out).
(b) Once all the water is in your bucket. The full bucket is lifted by cable to the roof of your dorm, where you will wait for your instructor to walk by. The cable weighs 5 Newtons per meter and the empty bucket weighs 100 Newtons. The top of the building is 20 meters high.

Recall the density of water is $1000 \mathrm{~kg} / \mathrm{m}^{3}$ and gravity is $9.8 \mathrm{~m} / \mathrm{s}^{2}$.
Find the total amount of work done altogether in pumping out the water and then lifting the full bucket to the roof of your dorm. (Give your final answer as a decimal in Joules).

